Skip to cookie consent Skip to main content

Innovation Discovery Grants Awarded to Mass General Brigham Scientific Advancements Designed to Help Patients, Healthcare Delivery

7 minute read

Six disruptive scientific advancements from Mass General Brigham have been awarded Innovation Discovery Grants (IDG) in the 2020 round of awards, as the highly competitive IDG program exceeds $3.5 million in grants since inception. Each of the five potential patient health and health care delivery break-throughs for 2020 will receive $100,000 toward ongoing development and future commercialization, based on their potential to improve health outcomes, meet articulated milestones, and achieve follow-on investment support as assessed by outside industry experts.

The Mass General Brigham Harvard faculty who will receive the IDG awards and their area of focus are:

  • Brain Penetrant AAV Vectors for CNS Gene Therapy. Fengfeng Bei, PhD, Brigham and Women’s Hospital
  • Commensal Papillomavirus Vaccine Development for Skin Cancer Therapy. Shawn Demehri, MD, PhD, Massachusetts General Hospital
  • Harnessing Neutrophil Plasticity for the Treatment of Cancer. Tanya Mayadas, PhD, Brigham and Women’s Hospital
  • A Clinically Applicable AI Toolbox for Dystonia Diagnosis. Kristina Simonyan, MD, PhD, Massachusetts Eye and Ear
  • MGH Down Syndrome Clinic to You (DSC2U). Brian Skotko, MD, Massachusetts General Hospital
  • Addressing the Need for Early, Accurate Diagnosis of Parkinson’s Disease: A New PET Radiotracer. Anna Sromek, PhD, McLean Hospital

“These translational projects are in some of the most promising areas of medical research,” said Ravi Thadhani, MD, Mass General Brigham chief academic officer. “Each represents a significant opportunity to improve treatments for patients faced with challenging diseases,” he explained. “IDG supports translation of breakthrough research from the lab into real-world products allowing the technology to potentially reach patients and caregivers with fewer delays. Congratulations to these award recipients and teams, and our appreciation to the industry panel for their assessment of this year’s applications.”

In a new round of funding for 2021, IDG will focus exclusively on Cell and Gene Therapy, a rapidly growing subset of genomic medicine that includes therapeutic modalities that treat a genetic disorder by influencing the structure, expression or inhibition of a gene and the consequent gene product(s). More information about the 2021 program can be found on the IDG website.

2020 IDG awards

Brain penetrant AAV vectors for CNS gene therapy

Fengfeng Bei, PhD, Brigham and Women’s Hospital

Gene therapy is now a viable approach for treating diseases in the central nervous system (CNS). A key obstacle for further developing CNS gene therapies has been a lack of safe and more potent gene-delivery vectors. The goal is to significantly optimize existing adeno-associated virus (AAV) gene-delivery technology to widely expand its application for the CNS. The work is built upon our recent success in devising a new hypothesis-driven approach for developing brain-penetrant AAV vectors.

Commensal papillomavirus vaccine development for skin cancer therapy

Shawn Demehri, MD, PhD, Massachusetts General Hospital

Current treatments for squamous cell carcinoma (SCC) and its precursor, actinic keratosis, represent a rising public health challenge with substantial morbidity, mortality, and an economic burden of more than $1 billion in total annual cost in the United States alone. The proposed live low-risk HPV vaccine strategy, a novel approach, using a patient’s own virome and immune system, could benefit a large population of patients who are prone to SCC due to fair skin and extensive sun-damage, aging, or immunosuppression.

Harnessing neutrophil plasticity for the treatment of cancer

Tanya Mayadas, PhD, Brigham and Women’s Hospital

The National Cancer Institute estimates that more than a third of Americans will be diagnosed with cancer during their lifetime. There have been significant advances in immunotherapy, but clinical benefits are confined to a minority of patients, and there remains a need for an approach to achieve durable and protective T cell immunity to many different types of tumors. We posit that a major problem is the absence of adequate antigen presentation. The approach is to convert the abundantly present circulating blood neutrophils into antigen-presenting cells that robustly activate T cells by giving an intravenous injection of an antigen-antibody conjugate (AAC) that targets a specific neutrophil receptor.

A clinically applicable AI toolbox for dystonia diagnosis

Kristina Simonyan, MD, PhD, Massachusetts Eye and Ear

A significant challenge in the clinical management of dystonia (abnormal muscle tone or spasm) is the absence of an objective diagnostic test, which in turn delays treatment and decreases the patient’s quality of life. Early and accurate diagnosis can enable timely and personalized therapy. The focus is on a machine-learning platform for automatic diagnosis of dystonia and the assessment of treatment outcome based on 3D-convolutional neural networks and raw brain MRIs. The availability of automated biomarkers of dystonia will significantly advance its clinical management by reducing the rate and costs associated with incorrect or delayed diagnosis, while accelerating the timely delivery of the most beneficial treatment.

MGH Down Syndrome Clinic to You (DSC2U)

Brian Skotko, MD, Massachusetts General Hospital

Current estimates suggest that ~95% of individuals with Down syndrome do not have access to a specialty clinic to guide their care. The approximately 7 million people living with Down syndrome (DS) world-wide are prone to multiple chronic conditions, including congenital heart disease, thyroid conditions, leukemia, and early onset Alzheimer’s. Most patients with DS have their medical care managed by their primary care providers (PCPs), but a recent study showed that <10% of children and teens with DS are kept up-to-date by their PCPs on the basic health recommendations. The existing DS specialty clinics in the U.S. only serve <5% of the estimated population (212,000). This health care disparity results in delayed or missed diagnoses and significant untreated co-morbidities. We have developed an online tool—called Down Syndrome Clinic to You (DSC2U)—using caregiver-entered information to generate personalized checklists for caregivers and primary care physicians with the latest medical information and resources about DS. We completed a national randomized controlled trial and results are conclusive: Our product is effective and desired by both caregivers and PCPs. DSC2U has now been commercially launched at www.dsc2u.org. This award enables our team to develop a subscription-based service for DSC2U, which is an valued option that has been requested by caregivers.

Addressing the need for early, accurate diagnosis of Parkinson’s disease: A new PET radiotracer

Anna Sromek, PhD, McLean Hospital

There is currently no reliable biomarker or imaging technique to confirm an early, accurate clinical diagnosis of Parkinson’s disease, which would be invaluable during this critical window toward developing a treatment plan. This project concerns the development of a fluorinated PET radiotracer for noninvasive assessment of dopaminergic function in the living brain.

The PET radiotracer has three applications:

  1. As a highly sensitive tool for enabling a definite diagnosis of suspected Parkinson’s disease and Lewy body dementia cases
  2. As a diagnostic biomarker for tracking disease progression
  3. As a diagnostic biomarker for measuring the efficacy of medications in clinical development for Parkinson’s disease and Lewy body dementia