Skip to cookie consent Skip to main content

Innovation Discovery Grants Awarded to Mass General Brigham Scientific Advancements Designed to Help Patients, Healthcare Delivery

8 minute read
scientific equipment

Five disruptive scientific advancements from Mass General Brigham have been awarded Innovation Discovery Grants (IDG) in the 2020 round of awards, as the highly competitive IDG program exceeds $3.5 million in grants since inception. Each of the five potential patient health and healthcare delivery break-throughs for 2020 will receive $100,000 toward ongoing development and future commercialization, based on their potential to improve health outcomes, meet articulated milestones, and achieve follow-on investment support as assessed by outside industry experts.

The Mass General Brigham Harvard faculty who will receive the IDG awards and their area of focus are:  

  • Brain Penetrant AAV Vectors for CNS Gene Therapy. Fengfeng Bei, PhD, Brigham and Women’s Hospital 
  • Commensal Papillomavirus Vaccine Development for Skin Cancer Therapy. Shawn Demehri, MD, PhD, Massachusetts General Hospital
  • Harnessing Neutrophil Plasticity for the Treatment of Cancer. Tanya Mayadas, PhD, Brigham and Women’s Hospital
  • A Clinically Applicable AI Toolbox for Dystonia Diagnosis. Kristina Simonyan, MD, PhD, Massachusetts Eye and Ear 
  • Addressing the Need for Early, Accurate Diagnosis of Parkinson’s Disease: A New PET Radiotracer. Anna Sromek, PhD, McLean Hospital

“These translational projects are in some of the most promising areas of medical research,” said Ravi Thadhani, MD, Mass General Brigham Chief Academic Officer. “Each represents a significant opportunity to improve treatments for patients faced with challenging diseases,” he explained. “IDG supports translation of breakthrough research from the lab into real-world products allowing the technology to potentially reach patients and caregivers with fewer delays. Congratulations to these award recipients and teams, and our appreciation to the industry panel for their assessment of this year’s applications.” 

In a new round of funding for 2021, IDG will focus exclusively on Cell and Gene Therapy, a rapidly growing subset of genomic medicine that includes therapeutic modalities that treat a genetic disorder by influencing the structure, expression or inhibition of a gene and the consequent gene product(s). More information about the 2021 program can be found on the IDG website.  

Following are descriptions of each of the 2020 IDG awards: 

Brain Penetrant AAV Vectors for CNS Gene Therapy – Fengfeng Bei, PhD, Brigham and Women’s Hospital. Gene therapy is now a viable approach for treating diseases in the central nervous system (CNS). A key obstacle for further developing CNS gene therapies has been a lack of safe and more potent gene delivery vectors. The goal is to significantly optimize existing adeno-associated virus (AAV) gene delivery technology to widely expand its application for the CNS. The work is built upon our recent success in devising a new hypothesis-driven approach for developing brain-penetrant AAV vectors.

Commensal Papillomavirus Vaccine Development for Skin Cancer Therapy – Shawn Demehri, MD, PhD, Massachusetts General Hospital. Current treatments for squamous cell carcinoma (SCC) and its precursor, actinic keratosis, represent a rising public health challenge with substantial morbidity, mortality and an economic burden of more than $1 billion in total annual cost in the United States alone. The proposed live low-risk HPV vaccine strategy, a novel approach using a patient’s own virome and immune system, could benefit a large population of patients who are prone to SCC either due to fair skin and extensive sun-damage, aging or immunosuppression.

Harnessing Neutrophil Plasticity for the Treatment of Cancer -- Tanya Mayadas, PhD, Brigham and Women’s Hospital. The National Cancer Institute estimates that more than a third of Americans will be diagnosed with cancer during their lifetime. There have been significant advances in immunotherapy, but clinical benefits are confined to a minority of patients, and there remains a need for an approach to achieve durable and protective T cell immunity to many different types of tumors. We posit that a major problem is the absence of adequate antigen presentation. The approach is to convert the abundantly present circulating blood neutrophils into antigen-presenting cells that robustly activate T cells by giving an intravenous injection of an antigen-antibody conjugate (AAC) that targets a specific neutrophil receptor. 

A Clinically Applicable AI Toolbox for Dystonia Diagnosis -- Kristina Simonyan, MD, PhD, Mass Eye and Ear. 

A significant challenge in the clinical management of dystonia (abnormal muscle tone or spasm) is the absence of an objective diagnostic test, which in turn delays treatment and decreases the patient's quality of life. Early and accurate diagnosis can enable timely and personalized therapy. Focus is on a machine-learning platform for automatic diagnosis of dystonia and the assessment of treatment outcome based on 3D convolutional neural networks and raw brain MRIs. The availability of automated biomarkers of dystonia will significantly advance its clinical management by reducing the rate and costs associated with incorrect or delayed diagnosis while accelerating the timely delivery of the most beneficial treatment. 

Addressing the Need for Early, Accurate Diagnosis of Parkinson’s Disease: A New PET Radiotracer -- Anna Sromek, PhD, McLean Hospital. 

There is currently no reliable biomarker or imaging technique to confirm an early, accurate clinical diagnosis of Parkinson’s disease, which would be invaluable during this critical window toward developing a treatment plan. This project concerns the development of a fluorinated PET radiotracer for noninvasive assessment of dopaminergic function in the living brain. The PET radiotracer has three applications: 1) as a highly sensitive tool for enabling a definite diagnosis of suspected Parkinson’s disease and Lewy body dementia cases; 2) as a diagnostic biomarker for tracking disease progression; 3) as a diagnostic biomarker for measuring the efficacy of medications in clinical development for Parkinson’s disease and Lewy body dementia.

About IDG

Enhancing the commercial outcomes of the Mass General Brigham community and increasing its innovative potential reflect the entrepreneurial spirit of the organization and the goals of IDG. The program stimulates new inventive concepts, identifies areas of commercially significant scientific strength and accelerates commercialization of Mass General Brigham intellectual assets. IDG projects must demonstrate tangible outcomes towards commercialization opportunities that improve patient health or healthcare delivery.

Since IDG’s inception in 2014, 58 projects have been awarded a combined $3.5 million and together have raised more than $60 million to further their development. Roughly $45 million of this additional investment has come from private sources. Among IDG projects, 12 license agreements have been executed to further project development, and nine start-up companies are actively developing IDG-supported technologies. The program is administered by Mass General Brigham Innovation, the system’s business development unit.  

IDG projects are reviewed and assessed by a panel of industry experts for criteria including: 

  • Potential impact on patient care and healthcare delivery
  • Probability of meeting the articulated milestones and achieving the endpoints described in the proposals
  • Likelihood of attracting follow-on support to further develop these cutting-edge technologies.

Previous IDG rounds have focused on supporting a broad range of technology types designed to address unmet clinical needs across the full clinical spectrum. In 2018 and 2019, IDG focused on the advancement and opportunities of artificial intelligence, data science, cognitive computation, and machine learning. Past recipients include Bharti Khurana, MD, Brigham and Women’s Hospital, who was awarded an IDG grant in 2019 for “Making the 'Invisible' Visible,” whereby radiological results are algorithmically correlated to intimate partner violence. Further results were recently shared at the 2020 Annual Meeting of the Radiological Society of North America (RSNA). 

Media Contact

Mass General Brigham:
Rich Copp

About Mass General Brigham Innovation

Innovation is the 150-person business development unit of Mass General Brigham responsible for the worldwide commercial application of the unique capabilities and discoveries of Mass General Brigham's 74,000 employees. Innovation supports the research requirements of its 6,200 Harvard Medical School faculty and research hospitals. It has responsibility for industry collaborations, venture investing, international consulting, licensing, innovation management, company creation, technology marketing, open innovation alliances, and workforce development.

About the Office of the Chief Academic Officer (CAO)

The CAO oversees Mass General Brigham’s $1.9 billion research enterprise and furthers the healthcare system’s commitment to applied knowledge and academics for the advancement of patient care. Its core components include AI development, personalized medicine, research computing, human research affairs, graduate medical education and continuing professional development. The CAO serves as the Harvard Medical School Dean for Academic Programs at Mass General Brigham. 

About Mass General Brigham

Mass General Brigham is an integrated academic health care system, uniting great minds to solve the hardest problems in medicine for our communities and the world. Mass General Brigham connects a full continuum of care across a system of academic medical centers, community and specialty hospitals, a health insurance plan, physician networks, community health centers, home care, and long-term care services. Mass General Brigham is a nonprofit organization committed to patient care, research, teaching, and service to the community. In addition, Mass General Brigham is one of the nation’s leading biomedical research organizations with several Harvard Medical School teaching hospitals. For more information, please visit